Trong không \(Oxyz\), gọi \(A,\,B,\,C\) lần lượt là hình chiếu vuông góc của điểm \(M(1;2;3)\) lên các trục tọa độ. Mặt phẳng \((ABC)\) có phương trình là
\(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=1\) | |
\(\dfrac{x}{1}+\dfrac{y}{2}+\dfrac{z}{3}=1\) | |
\(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=0\) | |
\(\dfrac{x}{1}+\dfrac{y}{2}+\dfrac{z}{3}=0\) |
Chọn phương án B.
Vì \(A,\,B,\,C\) lần lượt là hình chiếu vuông góc của điểm \(M(1;2;3)\) lên các trục tọa độ nên \(A(1;0;0)\), \(B(0;2;0)\), \(C(0;0;3)\).
Ta có phương trình đoạn chắn $$(ABC)\colon\dfrac{x}{1}+\dfrac{y}{2}+\dfrac{z}{3}=1.$$