Phương trình $\cos2x-2\sqrt{3}\sin x\cos x-1=0$ tương đương với phương trình nào sau đây?
$\sin\left(2x-\dfrac{2\pi}{3}\right)=-\dfrac{1}{2}$ | |
$\sin\left(2x+\dfrac{5\pi}{6}\right)=\dfrac{1}{2}$ | |
$\sin\left(2x-\dfrac{5\pi}{6}\right)=\dfrac{1}{2}$ | |
$\sin\left(2x+\dfrac{2\pi}{3}\right)=-\dfrac{1}{2}$ |
Chọn phương án B.
\begin{align*}
&\cos2x-2\sqrt{3}\sin x\cos x-1=0\\
\Leftrightarrow&\cos2x-\sqrt{3}\sin2x-1=0\\
\Leftrightarrow&\dfrac{1}{2}\cos2x -\dfrac{\sqrt{3}}{2}\sin2x =\dfrac{1}{2}\\
\Leftrightarrow&\sin\dfrac{\pi}{6}\cos2x-\cos\dfrac{\pi}{6}\sin2x=\dfrac{1}{2}\\
\Leftrightarrow&\sin\left(\dfrac{\pi}{6}-2x\right)=\dfrac{1}{2}\\
\Leftrightarrow&\sin\left(2x+\dfrac{5\pi}{6}\right)=\dfrac{1}{2}.
\end{align*}