Tìm tất cả các nghiệm của phương trình $\tan^2x+\left(\sqrt{3}-1\right)\tan x-\sqrt{3}=0$.
$x=\dfrac{\pi}{4}+k\pi;\,x=-\dfrac{\pi}{6}+k\pi,\,(k\in\mathbb{Z})$ | |
$x=-\dfrac{\pi}{4}+k\pi;\,x=\dfrac{\pi}{3}+k\pi,\,(k\in\mathbb{Z})$ | |
$x=\dfrac{\pi}{4}+k\pi;\,x=-\dfrac{\pi}{3}+k\pi,\,(k\in\mathbb{Z})$ | |
$x=-\dfrac{\pi}{4}+k\pi;\,x=-\dfrac{\pi}{3}+k\pi,\,(k\in\mathbb{Z})$ |
Chọn phương án C.
$\begin{aligned}
&\tan^2x+\left(\sqrt{3}-1\right)\tan x-\sqrt{3}=0\\
\Leftrightarrow&\left[\begin{array}{l}
\tan x=1\\ \tan x=-\sqrt{3}
\end{array}\right.\\
\Leftrightarrow&\left[\begin{array}{l}
x=\dfrac{\pi}{4}+k\pi\\ x=-\dfrac{\pi}{3}+k\pi
\end{array}\right.\;(k\in\mathbb{Z})
\end{aligned}$