Cho hàm số $y=f\left(x\right)$ có đạo hàm tại điểm $x_0=2$. Tính $$\lim\limits_{x\to2}\dfrac{2f\left(x\right)-xf\left(2\right)}{x-2}.$$
$0$ | |
$f'\left(2\right)$ | |
$2f'\left(2\right)-f\left(2\right)$ | |
$f\left(2\right)-2f'\left(2\right)$ |
Chọn phương án C.
Ta có $\lim\limits_{x\to2}\dfrac{f\left(x\right)-f\left(2\right)}{x-2}=f'\left(2\right)$.
Khi đó $$\begin{aligned}
\lim\limits_{x\to2}\dfrac{2f\left(x\right)-xf\left(2\right)}{x-2}&=\lim\limits_{x\to2}\dfrac{2f\left(x\right)-2f\left(2\right)+2f\left(2\right)-xf\left(2\right)}{x-2}\\
&=\lim\limits_{x\to2}\dfrac{2\left(f\left(x\right)-f\left(2\right)\right)}{x-2}-\lim\limits_{x\to2}\dfrac{f\left(2\right)\left(x-2\right)}{x-2}\\
&=2f'\left(2\right)-f\left(2\right).
\end{aligned}$$