Biết \(I=\displaystyle\int\limits_1^2\dfrac{x^2+2x}{x+1}\mathrm{\,d}x=\dfrac{5}{a}+\ln b-\ln c\). Tính giá trị biểu thức \(S=a-b+c\).
\(S=7\) | |
\(S=3\) | |
\(S=-3\) | |
\(S=1\) |
Chọn phương án B.
\(\begin{aligned}I&=\displaystyle\int\limits_1^2 \dfrac{x^2+2x}{x+1}\mathrm{\,d}x\\
&=\displaystyle\int\limits_1^2 \left(x+1-\dfrac{1}{x+1}\right)\mathrm{\,d}x\\
&=\left(\dfrac{x^2}{2}+x-\ln|x+1|\right)\bigg|_1^2\\
&=\dfrac{5}{2}+\ln2-\ln3.\end{aligned}\)
Theo đó \(a=2,\,b=2,\,c=3\).
Suy ra \(S=a-b+c=2-2+3=3\).