Tìm đạo hàm của hàm số $y=\tan\left(\dfrac{\pi}{4}-x\right)$.
$y'=-\dfrac{1}{\cos^2\left(\dfrac{\pi}{4}-x\right)}$ | |
$y'=\dfrac{1}{\cos^2\left(\dfrac{\pi}{4}-x\right)}$ | |
$y'=\dfrac{1}{\sin^2\left(\dfrac{\pi}{4}-x\right)}$ | |
$y'=-\dfrac{1}{\sin^2\left(\dfrac{\pi}{4}-x\right)}$ |
Chọn phương án A.
$\begin{aligned}
y'&=\left(\dfrac{\pi}{4}-x\right)^{\prime}.\dfrac{1}{\cos^2\left(\dfrac{\pi}{4}-x\right)}\\
&=-\dfrac{1}{\cos^2\left(\dfrac{\pi}{4}-x\right)}.
\end{aligned}$