Cho $\left(\dfrac{2x^2-3x+5}{x-3}\right)^{\prime}=\dfrac{ax^2-bx+c}{\left(x-3\right)^2}$. Tính $S=a+b+c$.
![]() | $S=0$ |
![]() | $S=12$ |
![]() | $S=-6$ |
![]() | $S=18$ |
Chọn phương án D.
$\begin{aligned}
\left(\dfrac{2x^2-3x+5}{x-3}\right)^{\prime}&=\dfrac{\left(4x-3\right)\left(x-3\right)-\left(2x^2-3x+5\right)}{\left(x-3\right)^2}\\
&=\dfrac{2x^2-12x+4}{\left(x-3\right)^2}.
\end{aligned}$
Theo giả thiết thì $\dfrac{2x^2-12x+4}{\left(x-3\right)^2}=\dfrac{ax^2-bx+c}{\left(x-3\right)^2}$.
Do đó $\begin{cases}a=2 \\ b=12 \\ c=4\end{cases}$.
Vậy $S=a+b+c=2+12+4=18$.