Cho hàm số $f\left(x\right)=\sqrt{2x-1}$. Tính $f'''\left(1\right)$.
![]() | $3$ |
![]() | $-3$ |
![]() | $\dfrac{3}{2}$ |
![]() | $0$ |
Chọn phương án A.
$f'\left(x\right)=\dfrac{\left(2x-1\right)^{\prime}}{2\sqrt{2x-1}}=\dfrac{1}{\sqrt{2x-1}}$.
$\begin{aligned}
f''\left(x\right)&=\dfrac{-\left(\sqrt{2x-1}\right)^{\prime}}{2x-1}\\
&=\dfrac{-1}{\left(2x-1\right)\sqrt{2x-1}}\\
&=\dfrac{-1}{\sqrt{\left(2x-1\right)^3}}.
\end{aligned}$
$\begin{aligned}
f'''\left(x\right)&=\dfrac{\left(\sqrt{\left(2x-1\right)^3}\right)^{\prime}}{\left(2x-1\right)^3}\\
&=\dfrac{3\left(2x-1\right)^2}{\left(2x-1\right)^3\sqrt{\left(2x-1\right)^3}}\\
&=\dfrac{3}{\sqrt{\left(2x-1\right)^5}}.
\end{aligned}$
Vậy $f'''\left(1\right)=3$.