Biết \(\displaystyle\int\limits_0^1\dfrac{x^3+2x^2+3}{x+2}\mathrm{\,d}x=\dfrac{1}{a}+b\ln\dfrac{3}{2}\) với \(a,\,b>0\). Tính giá trị của \(S=a+2b\).
\(S=5\) | |
\(S=6\) | |
\(S=9\) | |
\(S=3\) |
Chọn phương án C.
\(\begin{aligned}\displaystyle\int\limits_0^1\dfrac{x^3+2x^2+3}{x+2}\mathrm{\,d}x&=\displaystyle\int\limits_0^1\left(x^2+\dfrac{3}{x+2}\right)\mathrm{\,d}x\\
&=\dfrac{x^3}{3}+3\ln|x+2|\bigg|_0^1\\
&=\dfrac{1}{3}+3\ln\dfrac{3}{2}.\end{aligned}\)
Theo đó \(a=3,\,b=3\Rightarrow S=a+2b=9\).