Tìm họ nguyên hàm của hàm số $f(x)=\mathrm{e}^{2021x}$.
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^{2021x}+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^{2021x}\cdot\ln2021+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=2021\cdot\mathrm{e}^{2021x}+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{1}{2021}\cdot\mathrm{e}^{2021x}+C$ |
Chọn phương án D.
Ta có $\displaystyle\int\mathrm{e}^x\mathrm{\,d}x=\mathrm{e}^x+C$.
Suy ra $\displaystyle\int\mathrm{e}^{2021x}\mathrm{\,d}x=\dfrac{1}{2021}\cdot\mathrm{e}^{2021x}+C$.