Ngân hàng bài tập
B

Tìm họ nguyên hàm của hàm số $f(x)=\mathrm{e}^{2021x}$.

$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^{2021x}+C$
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\mathrm{e}^{2021x}\cdot\ln2021+C$
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=2021\cdot\mathrm{e}^{2021x}+C$
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{1}{2021}\cdot\mathrm{e}^{2021x}+C$
1 lời giải Sàng Khôn
Trở lại Tương tự
Thêm lời giải
1 lời giải
Sàng Khôn
09:43 23/01/2022

Chọn phương án D.

Ta có $\displaystyle\int\mathrm{e}^x\mathrm{\,d}x=\mathrm{e}^x+C$.

Suy ra $\displaystyle\int\mathrm{e}^{2021x}\mathrm{\,d}x=\dfrac{1}{2021}\cdot\mathrm{e}^{2021x}+C$.