Biết $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=3x\cos(2x-5)+C$. Tìm khẳng định đúng trong các khẳng định sau:
$\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=9x\cos(6x-5)+C$ | |
$\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=9x\cos(2x-5)+C$ | |
$\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=3x\cos(2x-5)+C$ | |
$\displaystyle\displaystyle\int f(3x)\mathrm{\,d}x=3x\cos(6x-5)+C$ |
Chọn phương án D.
Đặt $u=3x\Rightarrow\mathrm{d}u=3\mathrm{d}x\Leftrightarrow\mathrm{d}x=\dfrac{1}{3}\mathrm{d}u$.
Khi đó $$\begin{aligned}\displaystyle\int f(3x)\mathrm{\,d}x&=\dfrac{1}{3}\displaystyle\int f(u)\mathrm{\,d}u=\dfrac{1}{3}\cdot3u\cos(2u-5)+C\\ &=3x\cos(6x-5)+C.\end{aligned}$$