Nếu đặt $u=2x+1$ thì $\displaystyle\displaystyle\int\limits_{0}^{1}(2x+1)^4\mathrm{\,d}x$ bằng
$\dfrac{1}{2}\displaystyle\displaystyle\int\limits_{1}^{3}u^4\mathrm{\,d}u$ | |
$\displaystyle\displaystyle\int\limits_{1}^{3}u^4\mathrm{\,d}u$ | |
$\dfrac{1}{2}\displaystyle\displaystyle\int\limits_{0}^{1}u^4\mathrm{\,d}u$ | |
$\displaystyle\displaystyle\int\limits_{0}^{1}u^4\mathrm{\,d}u$ |
Chọn phương án A.
Với $u=2x+1$ ta có
Vậy $\displaystyle\int\limits_{0}^{1}(2x+1)^4\mathrm{\,d}x=\dfrac{1}{2}\displaystyle\int\limits_{1}^{3}u^4\mathrm{\,d}u$.