Gọi $D$ là hình phẳng giới hạn bởi đồ thị của hàm số $y=f(x)$ liên tục trên đoạn $[a;b]$, trục hoành và hai đường thẳng $x=a$, $x=b$. Thể tích $V$ của khối tròn xoay tạo thành khi quay hình $D$ xung quanh trục $Ox$ được tính theo công thức nào dưới đây?
$V=\pi^2\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x$ | |
$V=\pi\displaystyle\displaystyle\int\limits_a^b f^2(x)\mathrm{\,d}x$ | |
$V=\left(\pi\displaystyle\displaystyle\int\limits_a^b f(x)\mathrm{\,d}x\right)^2$ | |
$V=2\pi\displaystyle\displaystyle\int\limits_a^b f^2(x)\mathrm{\,d}x$ |