Biết $\displaystyle\displaystyle\int\limits_0^1x\sqrt{x^2+4}\mathrm{\,d}x=\dfrac{1}{a}\left(\sqrt{b^3}-c\right)$. Tính $Q=abc$.
![]() | $Q=120$ |
![]() | $Q=15$ |
![]() | $Q=-120$ |
![]() | $Q=40$ |
Chọn phương án A.
Đặt $t=\sqrt{x^2+4}\Leftrightarrow t^2=x^2+4\Rightarrow t\mathrm{\,d}t=x\mathrm{\,d}x$.
$\Rightarrow\displaystyle\int\limits_0^1x\sqrt{x^2+4}\mathrm{\,d}x=\displaystyle\int\limits_2^{\sqrt{5}}t^2\mathrm{\,d}t=\dfrac{t^3}{3}\bigg|_2^{\sqrt{5}}=\dfrac{1}{3}\left(\sqrt{5^3}-8\right)$.
Theo đó $\begin{cases}
a=3\\ b=5\\ c=8
\end{cases}\Rightarrow Q=abc=120$.