Biết $\displaystyle\displaystyle\int\left(3x^3+5x^4\right)\mathrm{\,d}x=Ax^\alpha+Bx^\beta+C$. Tính $P=A\alpha+B\beta$.
$P=37$ | |
$P=4$ | |
$P=29$ | |
$P=8$ |
Chọn phương án D.
Ta có $\displaystyle\int\left(3x^3+5x^4\right)\mathrm{\,d}x=\dfrac{3}{4}x^4+x^5+C$.
Suy ra $A=\dfrac{3}{4}$, $\alpha=4$, $B=1$, $\beta=5$.
Vậy $P=A\alpha+B\beta=8$.