Tìm \(\displaystyle\int\dfrac{1}{x^2}\mathrm{\,d}x\).
\(\displaystyle\int\dfrac{1}{x^2}\mathrm{\,d}x=\dfrac{1}{x}+C\) | |
\(\displaystyle\int\dfrac{1}{x^2}\mathrm{\,d}x=-\dfrac{1}{x}+C\) | |
\(\displaystyle\int\dfrac{1}{x^2}\mathrm{\,d}x=\dfrac{1}{2x}+C\) | |
\(\displaystyle\int\dfrac{1}{x^2}\mathrm{\,d}x=\ln x^2+C\) |
Chọn phương án B.
Vì \(\left(\dfrac{1}{x}\right)'=-\dfrac{1}{x^2}\) nên \(\displaystyle\int\dfrac{1}{x^2}\mathrm{\,d}x=-\dfrac{1}{x}+C\).