Tìm họ nguyên hàm của hàm số \(f(x)=\dfrac{5+2x^4}{x^2}\).
\(\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{2x^3}{3}-\dfrac{5}{x}+C\) | |
\(\displaystyle\int f(x)\mathrm{\,d}x=2x^3-\dfrac{5}{x}+C\) | |
\(\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{2x^3}{3}+\dfrac{5}{x}+C\) | |
\(\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{2x^3}{3}+5\ln x^2+C\) |
Chọn phương án A.
Ta có: \(f(x)=\dfrac{5+2x^4}{x^2}=\dfrac{5}{x^2}+2x^2\).
\(\begin{aligned}\Rightarrow\displaystyle\int f(x)\mathrm{\,d}x&=\int\left(\dfrac{5}{x^2}+2x^2\right)\mathrm{\,d}x\\
&=-\dfrac{5}{x}+\dfrac{2x^3}{3}+C.\end{aligned}\)