Tìm nguyên hàm của hàm số \(f(x)=x^2-2^x\).
\(\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{x^3}{3}+\dfrac{2^x}{\ln 2}+C\) | |
\(\displaystyle\int f(x)\mathrm{\,d}x =2x-\dfrac{2^x}{\ln 2}+C\) | |
\(\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{x^3}{3}-\dfrac{2^x}{\ln2}+C\) | |
\(\displaystyle\int f(x)\mathrm{\,d}x=2x-2^x\ln2+C\) |
Chọn phương án C.
\(\begin{aligned}\displaystyle\int f(x)\mathrm{\,d}x&=\displaystyle\int\left(x^2-2^x\right)\mathrm{\,d}x\\
&=\dfrac{x^3}{3}-\dfrac{2^x}{\ln2}+C.\end{aligned}\)