Xác định \(f(x)\) biết \(\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{1}{x}+\mathrm{e}^x+C\).
![]() | \(f(x)=\ln\left|x\right|+\mathrm{e}^x\) |
![]() | \(f(x)=\dfrac{1}{x^2}+\mathrm{e}^x\) |
![]() | \(f(x)=-\dfrac{1}{x^2}+\mathrm{e}^x\) |
![]() | \(f(x)=\ln x+\mathrm{e}^x\) |
Chọn phương án C.
Vì \(\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{1}{x}+\mathrm{e}^x+C\) nên $$f(x)=\left(\dfrac{1}{x}+\mathrm{e}^x+C\right)'=-\dfrac{1}{x^2}+\mathrm{e}^x$$