Tìm họ nguyên hàm của hàm số $f\left(x\right)=5^x$.
$\displaystyle\displaystyle\int{f\left(x\right)\mathrm{d}x}=5^x+C$ | |
$\displaystyle\displaystyle\int{f\left(x\right)}\mathrm{d}x=5^x\ln5+C$ | |
$\displaystyle\displaystyle\int{f\left(x\right)}\mathrm{d}x=\dfrac{5^x}{\ln5}+C$ | |
$\displaystyle\displaystyle\int{f\left(x\right)\mathrm{d}x}=\dfrac{5^{x+1}}{x+1}+C$ |