Trên khoảng $(0;+\infty)$, họ nguyên hàm của hàm số $f(x)=x^{\tfrac{3}{2}}$ là
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{3}{2}x^{\tfrac{1}{2}}+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{5}{2}x^{\tfrac{2}{5}}+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{2}{5}x^{\tfrac{5}{2}}+C$ | |
$\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{2}{3}x^{\tfrac{1}{2}}+C$ |
Chọn phương án C.
Ta có $\displaystyle\int x^{\tfrac{3}{2}}\mathrm{\,d}x=\dfrac{x^{\tfrac{3}{2}+1}}{\dfrac{3}{2}+1}+C=\dfrac{2}{5}x^{\tfrac{5}{2}}+C$.