Nếu $\displaystyle\displaystyle\int\limits_1^2f(x)\mathrm{\,d}x=2$, $\displaystyle\displaystyle\int\limits_1^4f(x)\mathrm{\,d}x=-1$ thì $\displaystyle\displaystyle\int\limits_2^4f(x)\mathrm{\,d}x$ bằng
$-3$ | |
$1$ | |
$-2$ | |
$3$ |
Chọn phương án A.
$\displaystyle\int\limits_1^4f(x)\mathrm{\,d}x=\displaystyle\int\limits_1^2f(x)\mathrm{\,d}x+\displaystyle\int\limits_2^4f(x)\mathrm{\,d}x\Leftrightarrow-1=2+\displaystyle\int\limits_2^4f(x)\mathrm{\,d}x$.
Vậy $\displaystyle\int\limits_2^4f(x)\mathrm{\,d}x=-1-2=-3$.