Cho hàm số $y=f(x)$ liên tục trên đoạn $[a;b]$. Gọi $D$ là hình phẳng giới hạn bởi đồ thị của hàm số $y=f(x)$, trục hoành và hai đường thẳng $x=a$, $x=b$ ($a< b$). Thể tích của khối tròn xoay tạo thành khi quay $D$ quanh trục hoành được tính theo công thức
$V=\displaystyle\displaystyle\int\limits_{a}^{b}\left|f(x)\right|\mathrm{\,d}x$ | |
$V=\pi^2\displaystyle\displaystyle\int\limits_{a}^{b}f(x)\mathrm{\,d}x$ | |
$V=\pi\displaystyle\displaystyle\int\limits_{a}^{b}f^2(x)\mathrm{\,d}x$ | |
$V=\pi^2\displaystyle\displaystyle\int\limits_{a}^{b}f^2(x)\mathrm{\,d}x$ |