Tìm nguyên hàm \(I=\displaystyle\int\left(2^x+3^x\right)\mathrm{\,d}x\).
\(I=\dfrac{2^x}{\ln2}+\dfrac{3^x}{\ln3}+C\) | |
\(I=\dfrac{\ln2}{2^x}+\dfrac{\ln3}{3^x}+C\) | |
\(I=\dfrac{\ln2}{2}+\dfrac{\ln3}{3}+C\) | |
\(I=-\dfrac{\ln2}{2}-\dfrac{\ln3}{3}+C\) |
Chọn phương án A.
\(I=\displaystyle\int\left(2^x+3^x\right)\mathrm{\,d}x=\dfrac{2^x}{\ln2}+\dfrac{3^x}{\ln3}+C.\)