Cho hàm số $f(x)$ liên tục trên $\mathbb{R}$ thỏa $\displaystyle\displaystyle\int\limits_{0}^{1}f(x)\mathrm{d}x=2$ và $\displaystyle\displaystyle\int\limits_{0}^2f(3x+1)\mathrm{d}x=6$. Tính $I=\displaystyle\displaystyle\int\limits_{0}^{7}f(x)\mathrm{d}x$.
$I=20$ | |
$I=8$ | |
$I=18$ | |
$I=16$ |
Chọn phương án A.
Đặt $u=3x+1\Rightarrow\mathrm{d}u=3\mathrm{d}x\Rightarrow\mathrm{d}x=\dfrac{1}{3}\mathrm{d}u$.
Do đó $\displaystyle\int\limits_{0}^2f(3x+1)\mathrm{d}x=\dfrac{1}{7}\displaystyle\int\limits_1^7f(u)\mathrm{d}u=\dfrac{1}{3}\displaystyle\int\limits_1^7f(x)\mathrm{d}x=6$.
Suy ra $\displaystyle\int\limits_1^7f(x)\mathrm{d}x=3\cdot6=18$.
Vậy $I=\displaystyle\int\limits_{0}^{1}f(x)\mathrm{d}x+\displaystyle\int\limits_1^7f(x)\mathrm{d}x=2+18=20$.