Cho tích phân $I=\displaystyle\displaystyle\int\limits_{0}^{1} x(1-x)^{2021}\mathrm{d}x$. Mệnh đề nào dưới đây đúng?
![]() | $I=\displaystyle\displaystyle\int\limits_{0}^{1}t^{2021}(1-t)\mathrm{d}t$ |
![]() | $I=-\displaystyle\displaystyle\int\limits_{-1}^{1}\left(t^{2022}-t^{2021}\right)\mathrm{d}t$ |
![]() | $I=-\displaystyle\int\limits_{0}^{1} t^{2021}(1-t)\mathrm{d}t$ |
![]() | $I=-\displaystyle\int\limits_{-1}^{1}\left(t^{2022}-t^{2021}\right)\mathrm{d}t$ |
Chọn phương án A.
Đặt $t=1-x\Leftrightarrow x=1-u\Rightarrow\mathrm{d}x=-\mathrm{d}t$.
Vậy $I=-\displaystyle\int\limits_{1}^{0}(1-t)\cdot t^{2021}\mathrm{\,d}t=\displaystyle\int\limits_{0}^{1}t^{2021}(1-t)\mathrm{\,d}t$.