Xét tích phân $I=\displaystyle\displaystyle\int\limits_1^{\rm{e}^2}\dfrac{\left(1+2\ln x\right)^2}{x}\mathrm{\,d}x$, nếu đặt $t=1+2\ln{x}$ thì $I$ bằng
$\dfrac{1}{2}\displaystyle\displaystyle\int\limits_1^{e^2}t^2\mathrm{\,d}t$ | |
$2\displaystyle\displaystyle\int\limits_1^5t^2\mathrm{\,d}t$ | |
$2\displaystyle\displaystyle\int\limits_1^{e^2}t^2\mathrm{\,d}t$ | |
$\dfrac{1}{2}\displaystyle\displaystyle\int\limits_1^5t^2\mathrm{\,d}t$ |
Chọn phương án D.
So sánh kết quả ta kết luận $$I=\displaystyle\int\limits_1^5t^2\dfrac{\mathrm{d}t}{2}=\dfrac{1}{2}\displaystyle\int\limits_1^5t^2\mathrm{\,d}t.$$
Chọn phương án D.
Đặt $t=1+2\ln{x}\Rightarrow\mathrm{\,d}t=\dfrac{2}{x}\mathrm{\,d}x\Rightarrow\dfrac{\mathrm{d}t}{2}=\dfrac{1}{x}\mathrm{\,d}x$.
Đổi cận: $x=1\Rightarrow t=1$, $x=e^2\Rightarrow t=5$.
Khi đó $I=\displaystyle\int\limits_1^5t^2\dfrac{\mathrm{d}t}{2}=\dfrac{1}{2}\displaystyle\int\limits_1^5t^2\mathrm{\,d}t$.