Gọi $M,\,m$ lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số $y=3+2\cos^2\left(x+\dfrac{\pi}{3}\right)$. Khi đó $m^2+M^2$ có giá trị là
$10$ | |
$34$ | |
$8$ | |
$26$ |
Chọn phương án B.
$\begin{aligned}
0\leq\cos^2\left(x+\dfrac{\pi}{3}\right)\leq1&\Leftrightarrow0\leq2\cos^2\left(x+\dfrac{\pi}{3}\right)\leq2\\
&\Leftrightarrow3\leq3+2\cos^2\left(x+\dfrac{\pi}{3}\right)\leq5.
\end{aligned}$
Vậy $M=5$, $m=3$. Suy ra $M^2+m^2=34$.