Từ các chữ số $0,\,1,\,2,\,3,\,5,\,6$ có thể lập được bao nhiêu số tự nhiên có $4$ chữ số đôi một khác nhau và chia hết cho $5$?
$360$ | |
$96$ | |
$432$ | |
$108$ |
Chọn phương án D.
Số cần tìm có dạng $\overline{abcd}$.
♥ Trường hợp $d=0$:
$\Rightarrow$ Có $5\cdot4\cdot3=60$ số (1).
♥ Trường hợp $d=5$:
$\Rightarrow$ Có $4\cdot4\cdot3=48$ số (2).
Từ (1) và (2) suy ra có $60+48=108$ số thỏa đề.