Nếu $\displaystyle\displaystyle\int\limits_{0}^{2}f(x)\mathrm{\,d}x=4$ thì $\displaystyle\displaystyle\int\limits_{0}^{2}\left[\dfrac{1}{2}f(x)+2\right]\mathrm{\,d}x$ bằng
![]() | $6$ |
![]() | $8$ |
![]() | $4$ |
![]() | $2$ |
Chọn phương án A.
$\begin{aligned}
\displaystyle\int\limits_{0}^{2}\left[\dfrac{1}{2}f(x)+2\right]\mathrm{\,d}x&=\dfrac{1}{2}\displaystyle\int\limits_{0}^{2}f(x)\mathrm{\,d}x+\displaystyle\int\limits_{0}^{2}2\mathrm{\,d}x\\
&=\dfrac{1}{2}\cdot4+2x\bigg|_0^2=6.
\end{aligned}$