Cho ba số thực dương $A,\,B,\,C$ khác $1$ thỏa $B^2=AC$. Mệnh đề nào sau đây đúng?
$\ln A+\ln C=2\ln B$ | |
$\ln A\cdot\ln C=2\ln B$ | |
$\ln A\cdot\ln C=\big(\ln B\big)^2$ | |
$\ln A+\ln C=\ln B$ |
Chọn phương án A.
$\begin{aligned}
B^2=AC&\Leftrightarrow\ln\big(B^2\big)=\ln(AC)\\
&\Leftrightarrow2\ln B=\ln A+\ln C.
\end{aligned}$