Tính giới hạn $A=\lim\limits_{x\to-\infty}\dfrac{x^2-3x+2}{4x-5}$.
$A=\dfrac{1}{4}$ | |
$A=-\infty$ | |
$A=-\dfrac{2}{5}$ | |
$A=+\infty$ |
Chọn phương án B.
$A=\lim\limits_{x\to-\infty}\dfrac{x^2\left(1-\dfrac{3}{x}+\dfrac{2}{x^2}\right)}{x\left(4-\dfrac{5}{x}\right)}=\lim\limits_{x\to-\infty}x\cdot\dfrac{1-\dfrac{3}{x}+\dfrac{2}{x^2}}{4-\dfrac{5}{x}}$.
Vì $\begin{cases}
\lim\limits_{x\to-\infty}x=-\infty\\
\lim\limits_{x\to-\infty}\dfrac{1-\dfrac{3}{x}+\dfrac{2}{x^2}}{4-\dfrac{5}{x}}=\dfrac{1}{4}>0
\end{cases}$ nên $A=-\infty$.