$\begin{aligned}
I&=\displaystyle\int\limits_{0}^{1}x\left(1+2x+x^2\right)\mathrm{\,d}x\\
&=\displaystyle\int\limits_{0}^{1}\left(x+2x^2+x^3\right)\mathrm{\,d}x\\
&=\left(\dfrac{x^2}{2}+\dfrac{2x^3}{3}+\dfrac{x^4}{4}\right)\bigg|_0^1\\
&=\dfrac{17}{12}.
\end{aligned}$