Tìm nguyên hàm của hàm số $f(x)=\cos\left(3x+\dfrac{\pi}{6}\right)$.
![]() | $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=-\dfrac{1}{3}\sin\left(3x+\dfrac{\pi}{6}\right)+C$ |
![]() | $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\sin\left(3x+\dfrac{\pi}{6}\right)+C$ |
![]() | $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{1}{3}\sin\left(3x+\dfrac{\pi}{6}\right)+C$ |
![]() | $\displaystyle\displaystyle\int f(x)\mathrm{\,d}x=\dfrac{1}{6}\sin\left(3x+\dfrac{\pi}{6}\right)+C$ |
Chọn phương án C.
Ta có $\displaystyle\int\cos x\mathrm{\,d}x=\sin x+C$.
Suy ra $\displaystyle\int\cos\left(3x+\dfrac{\pi}{6}\right)\mathrm{\,d}x=\dfrac{1}{3}\sin\left(3x+\dfrac{\pi}{6}\right)+C$.