Cho $\log3=a$ và $\log5=b$. Tính $\log_61125$ theo $a$ và $b$.
$\dfrac{3a+2b}{a+1-b}$ | |
$\dfrac{3a-2b}{a+1+b}$ | |
$\dfrac{2a+3b}{a+1-b}$ | |
$\dfrac{3a+2b}{a-1+b}$ |
Chọn phương án C.
$\begin{aligned}
\log_61125&=\dfrac{\log1125}{\log6}=\dfrac{\log\big(3^2\cdot5^3\big)}{\log\dfrac{3\cdot10}{5}}\\
&=\dfrac{2\log3+3\log5}{\log3+\log10-\log5}\\
&=\dfrac{2a+3b}{a+1-b}.
\end{aligned}$