Trong không gian \(Oxyz\), cho hai vectơ \(\vec{u}=(1;0;-3)\) và \(\vec{v}=(-1;-2;0)\). Tính \(\cos\left(\vec{u},\vec{v}\right)\).
\(\cos\left(\vec{u},\vec{v}\right)=-\dfrac{1}{5\sqrt{2}}\) | |
\(\cos\left(\vec{u},\vec{v}\right)=-\dfrac{1}{\sqrt{10}}\) | |
\(\cos\left(\vec{u},\vec{v}\right)=\dfrac{1}{\sqrt{10}}\) | |
\(\cos\left(\vec{u},\vec{v}\right)=\dfrac{1}{5\sqrt{2}}\) |
Chọn phương án A.
\(\begin{aligned}\cos\left(\vec{u},\vec{v}\right)&=\dfrac{1\cdot(-1)+0\cdot(-2)-3\cdot0}{\sqrt{1^2+0^2+(-3)^2}\cdot\sqrt{(-1)^2+(-2)^2+0^2}}\\
&=-\dfrac{1}{5\sqrt{2}}.\end{aligned}\)