Cho \(3^a=5\), khi đó \(\log_{25}81\) bằng
\(\dfrac{a}{2}\) | |
\(\dfrac{2}{a}\) | |
\(2a\) | |
\(\dfrac{1}{2a}\) |
Chọn phương án B.
\(\begin{aligned}\log_{25}81&=\log_{5^2}3^4=\dfrac{4}{2}\log_53\\
&=2\log_{3^a}3=\dfrac{2}{a}\log_33=\dfrac{2}{a}.\end{aligned}\)
Chọn phương án B.
Ta có \(3^a=5\Leftrightarrow a=\log_35\).
Khi đó $$\log_{25}81=\log_{5^2}3^4=\dfrac{4}{2}\log_53=\dfrac{2}{\log_35}=\dfrac{2}{a}$$