Nếu \(\log_35=a\) thì \(\log_{45}75\) bằng
\(\dfrac{2+a}{1+2a}\) | |
\(\dfrac{1+a}{2+a}\) | |
\(\dfrac{1+2a}{2+a}\) | |
\(\dfrac{1+2a}{1+a}\) |
Chọn phương án C.
Dùng máy tính cầm tay:
Vậy \(\log_{45}75=\dfrac{1+2a}{2+a}\).
Chọn phương án C.
\(\begin{aligned}\log_{45}75&=\dfrac{\log_375}{\log_345}=\dfrac{\log_3\left(3\cdot5^2\right)}{\log_3\left(5\cdot3^2\right)}\\
&=\dfrac{\log_33+\log_35^2}{\log_35+\log_33^2}\\
&=\dfrac{1+2\log_35}{\log_35+2}=\dfrac{1+2a}{2+a}.\end{aligned}\)