Tam giác \(ABC\) có \(a=2\), \(b=\sqrt{6}\), \(c=1+\sqrt{3}\). Góc \(\widehat{B}\) bằng
\(115^\circ\) | |
\(75^\circ\) | |
\(60^\circ\) | |
\(53^\circ32'\) |
Chọn phương án C.
\(\begin{align*}\text{Ta có }\cos B&=\dfrac{a^2+c^2-b^2}{2ac}\\
&=\dfrac{2^2+\left(1+\sqrt{3}\right)^2-\left(\sqrt{6}\right)^2}{2\cdot2\left(1+\sqrt{3}\right)}\\
&=\dfrac{1}{2}.\end{align*}\)
Suy ra \(\widehat{B}=60^\circ\).